

DPP - 2 (WEP)

Video Solution on Website:- https://physicsaholics.com/home/courseDetails/75

Video Solution on YouTube:-
 https://youtu.be/6abU7oGhzRA

Written Solutionon Website:-

https://physicsaholics.com/note/notesDetalis/77
Q 1. A block is attached with a spring and is moving towards a fixed wall with speed v as shown in figure. As the spring reaches the wall, it starts compressing. The work done by the spring on the wall during the process of compression is :

(a) $1 / 2 \mathrm{mv}^{2}$
(b) $m v^{2}$
(c) Kmy
(d) zero

Q 2. A ship of mass $3 \times 10^{7} \mathrm{~kg}$, initiallyat rest is pulled by a force of $5 \times 10^{4} \mathrm{~N}$ through a distance of 3 m . Assuming that the resistance due to water is negligible, the speed of the ship is:
(a) $1.5 \mathrm{~m} / \mathrm{s}$
(b) $60 \mathrm{~m} / \mathrm{s}$
(c) $0.1 \mathrm{~m} / \mathrm{s}$
(d) $5 \mathrm{~m} / \mathrm{s}$

Q 3. A block attached to a spring, pulled by a constant horizontal force, is kept on a smooth surface as shown in the figure. Initially, the spring is in the natural state. Then the maximum positive work that the applied force F can do is: [Given that spring does not break]

(a) $\frac{F^{2}}{K}$
(b) $\frac{2 F^{2}}{K}$
(c) ∞
(d) $\frac{F^{2}}{2 K}$

Q 4. The minimum work done required to accelerate a truck on a horizontal road from rest to speed v
(a) is less than that required to accelerate if from v to 2 v .
(b) is equal than that required to accelerate it from v to 2 v .
(c) is more than that required to accelerate it from v to 2 v .
(d) may be any one of the above since it depends on the force acting on the truck and the distance over which it acts.

Q 5. A moving particle is acted upon by several forces $F_{1}, F_{2}, F_{3}, \ldots$ etc. One of the forces is chosen, say F_{2}, then which of the following statement about F_{2} will be true.
(a) Work done by F_{2} will be negative if speed of the particle decreases.
(b) Work done by F_{2} will be positive if speed of the particle increases
(c) Work done by F_{2} will be equal to the work done by other forces if speed of the particle does not change
(d) Work done by F_{2} may be zero.

Q 6. In the track shown in figure section AB is a quadrant of a circle of 1 meter radius. A block is released at A and slides without friction until it reaches B. After B it moves on a rough horizontal floor and comes to rest at distance 3 meters from B. What is the coefficient of friction between floor and body?

(a) $1 / 3$
(b) $2 / 3$
(c) $1 / 4$
(d) $3 / 8$

Q 7. The spring is compressed by a distance a and released. The block again comes to rest when the spring is elongated by a distance b. During this

(a) work done by spring on the block $=\frac{1}{2} k(a+b)^{2}$
(b) work done by spring on the block $=\frac{1}{2} \mathrm{k}\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)$
(c) co-efficient of friction $=\frac{\mathrm{k}(a-b)}{2 m g}$
(d) co-efficient of friction $=\frac{k(a+b)}{2 m g}$

Q 8. A block of mass m starts at rest at height h on a frictionless inclined plane. The block slides down the plane, travels across a rough horizontal surface with coefficient of kinetic friction m , and compresses a spring with force constant k a distance x before momentarily coming to rest. Then the spring extends and the block travels back across the rough surface, sliding up the plane. The block travels a total distance d on rough horizontal surface. The correct expression for the maximum height h' that the block reaches on its return is:

(a) $\mathrm{mgh}=\mathrm{mgh}-\mathrm{mmgd}$
(b) mgh' $=\mathrm{mgh}+\mathrm{mmgd}$
(c) $\mathrm{mgh}=\mathrm{mgh}+\mathrm{mmgd}+\mathrm{kx}^{2}$
(d) $\mathrm{mgh}=\mathrm{mgh}-\mathrm{mmgd}-\mathrm{kx}^{2}$

Q 9. There are two massless springs A and B of spring constant K_{A} and K_{B} respectively and $K_{A}>K_{B}$. If W_{A} and W_{B} be denoted as work done on A and work done on B respectively, then
(a) If they are compressed to same distance, $\mathrm{W}_{\mathrm{A}}>\mathrm{W}_{\mathrm{B}}$
(b) If they are compressed by same force (upto equilibrium state) $\mathrm{W}_{\mathrm{A}}<\mathrm{W}_{\mathrm{B}}$
(c) If they are compressed by same distance, $\mathrm{W}_{\mathrm{A}}=\mathrm{W}_{\mathrm{B}}$
(d) If they are compressed by same force (upto equilibrium state) $\mathrm{W}_{\mathrm{A}}>\mathrm{W}_{\mathrm{B}}$

Q 10. The mean kinetic energy of a particle of mass moving under a constant acceleration in any interval of time when initial and final velocities are u_{1} and u_{2}
(a) $\frac{1}{2} \mathrm{~m}\left(u_{1}{ }^{2}+u_{2}{ }^{2}\right)$
(b) $\frac{1}{2} \mathrm{~m}\left(u_{1}{ }^{2}-u_{2}{ }^{2}\right)$
(c) $\frac{1}{2} \mathrm{~m}\left(u_{1}{ }^{2}+u_{2}{ }^{2}+\mathrm{u}_{1} \mathrm{u}_{2}\right)$
(d) Zero

Q 11. An object of mass m slides down a hill of height h of arbitrary shape and after travelling a certain horizontal path stops because of friction. The friction coefficient is different for different segments for the entire path but is independent of the velocity and direction of motion. The work that a force must perform to return the object to its initial position along the same path is:
(a) mgh
(b) 2 mgh
(c) 4 mgh
(d) -mgh

Q 12. A 1.5 kg block is initially at rest on a horizontal frictionless surface when a horizontal force in the positive direction of x -axis is applied to the block. The force is given by $\vec{F}=\left(4-x^{2}\right) \hat{\imath}$ N, where x is in metre and the initiar position of the block is $\mathrm{x}=0$. The maximum kinetic energy of the block between $x=0$ and $x=2.0 \mathrm{~m}$ is:
(a) $2,33 \mathrm{~J}$
(b) 8.67 J
(c) 5.33 J
(d) 6.67 J

Q 13. Two blocks of masses $m_{1}=1 \mathrm{~kg}$ and $\mathrm{m}_{2}=2 \mathrm{~kg}$ are connected by a non-deformed light spring. They are lying on arough horizontal surface. The coefficient of friction between the blocks and the surface is 0.4 . What minimum constant force F has to be applied inhorizontal direction to the block of mass m_{1} in order to shift the other block? $\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

(a) 8 N
(b) 15 N
(c) 10 N
(d) 25 N

Answer Key

Q. 1 d	Q. 2 c	Q. 3 b	Q. 4 a	Q. 5 d
Q. 6 a	Q. $7 \mathrm{~b}, \mathrm{c}$	Q.8 a	Q.9 a,b	Q.10 c
Q.11 b	Q.12 c	Q.13 a		

© India's Best Educators
© Interactive Live Classes
© Structured Courses \& PDFs
© Live Tests \& Quizzes
\times Personal Coach \times Study Planner

No cost EMI

18 months
No cost EMI

12 months
12 months
No cost EMI

6 months
No cost EMI
₹28,000

To be paid as a one-time payment
View all plans
9
Add a referral code

PHYSICSLIVE

© India's Best Educators
© Interactive Live Classes
© Structured Courses \& PDFs
© Live Tests \& Quizzes
\times Personal Coach
\times Study Planner
₹ $2,100 / \mathrm{mo}$ +10\% OFF ₹50,400

$$
+10 \% \text { OFF ₹ } 42,525
$$

6 months
No cost EMI

Use code PHYSICSLIVE to get 10% OFF on Unacademy PLUS.
₹4,200/mo

$$
+10 \% \text { OFF ₹ } 25,200
$$

Written Solution

DPP- 2 WEP- Work Done by Spring Force, Work

 Energy TheoremBy Physicsaholics Team

Solutions
Since point of application of spring force on wall is not moving.

$$
W=0
$$

$\operatorname{Ans}(d)$

Solution:2 by Using work energy theorem

$$
\begin{aligned}
& W_{\text {all }}=K-k_{i} \\
& \Rightarrow \quad 5 \times 10^{4} \times 3=\frac{1}{3} \times \sqrt{3} \times 10^{7} V^{2} \\
&
\end{aligned}
$$

by Using work - energy theorring \rightarrow

$$
\begin{aligned}
& W_{F}+W_{s F}=k_{i}-k_{i} \Rightarrow E x-\frac{1}{2} k\left(0^{2}-x^{2}\right)=0-0 \\
& x=2 F / k
\end{aligned}
$$

$$
\begin{aligned}
\text { Maximum work by } F & =F \cdot \max \text { Displacement } \\
& =F \times 2 F / k=\frac{2 F^{2}}{k}
\end{aligned}
$$

$\operatorname{Ans}(b)$

Solution:4 by using work - Energy theorem \rightarrow
Work to accelerate from rest to $\quad V-\frac{1}{2} m\left((v)^{2}-0^{2}\right)=\frac{1}{2} m v^{2}$
$1,1, \quad 1, \quad \Delta \operatorname{ta} 2 v=\frac{1}{2} m\left((2 v)^{2}-v^{2}\right)=\frac{3}{2} m v^{2}$
$\operatorname{Ans}(a)$

Solution:5
V is decreasing \Rightarrow K.E. is decreasing \Rightarrow net work done by all forces $=-V e$ V is increasing $\Rightarrow K E$ is increasing \Rightarrow net, 1,
V is constant $\Rightarrow K E$ is Constant \Rightarrow Wall $=0$
$W_{F_{2}}$ will be $W_{F_{2}}=-W_{\text {other forces }}$
$A N_{s}(d)$

Solution: 6
by Using work - Energy theorem
A 1 meter

$$
\begin{aligned}
& W_{N}+W_{m y}+W_{f r}=k_{f}-k_{i} \\
\Rightarrow & 0+m g x 1-\operatorname{ting}=0-0 \\
\Rightarrow & \quad \operatorname{mingx}=m g \\
\Rightarrow & \quad,=1 / x=\frac{1}{3}
\end{aligned}
$$

Solution:7
work done by spring on block

$$
=\frac{1}{2} k\left(x_{i}^{2}-x_{t}^{2}\right)=\frac{1}{2} k\left(a^{2}-b^{2}\right)
$$

by Using work Energy theorem

$$
\begin{aligned}
& W_{\text {sF }}+W_{f g} \Rightarrow K_{f}-k_{i} \\
\Rightarrow & \frac{1}{2} k\left(a^{2}-b^{2}\right)-\mu m g(a+b)=0 \\
\Rightarrow & \frac{1}{2} k(a-b)(a+b)=\operatorname{ling}(a+b) \\
\Rightarrow & \quad{ }_{l}=\frac{k(a-b)}{2 m g} \quad \text { ANs }(b, c)
\end{aligned}
$$

Solution: 8

$$
\begin{aligned}
& W_{N}+W_{f_{r}}+W_{S F}+W_{m g}=k_{f}-k_{i} \\
\Rightarrow & 0-\mu m g d+0+m g\left(h-h^{\prime}\right)=0-(0) \text { finalhaight } \\
\Rightarrow & m g h^{\prime}=m g h-\operatorname{limgdd}
\end{aligned}
$$

Solution:9 given $\rightarrow K_{A}>K_{B}$
Work done on spring
$=-$ Work done by spring
$=\frac{1}{2} k\left(x_{f}^{2}-x_{i}^{2}\right)=\frac{1}{2} k x^{2}$. [1 spring is fainksessed from natural length $+0 x$)
$=\frac{F^{2}}{2 k}$ (ifsoring is compressed by force F)
If springe are compressed through same distance $W_{A}>W_{B}$
1, , R, By same fore $W_{B}>W_{A}$
$\operatorname{ANs}(a, b)$

Solution:10 Since acceleration is Constant,

$$
\begin{aligned}
& \text { Velocity at } t=t \text { is } V=u_{1}+a t \text { and } u_{2}=u_{1}+a t_{0} \\
& \Rightarrow \quad K . E \text { at } t=t \text { is } \frac{1}{2} m\left(u_{1}+a t\right)^{2} \\
&\langle K E\rangle= \int_{0}^{t_{0}} \frac{1}{2} m\left(u_{1}+a t\right)^{2} d t \\
& t i m e a t w h i c h \\
& V=u_{2}
\end{aligned}
$$

Solution:11
for motion from tole of hill to gonging to rest \rightarrow

$$
\begin{aligned}
& W_{f r}+W_{m y}=k_{f}-k_{i} \\
\Rightarrow & W_{f r}=-n \text { gage (work Energy theorem) }
\end{aligned}
$$

for return gurney \rightarrow

$$
\begin{align*}
W_{f r}+W_{m g}+W_{F} & =k_{f}-k_{i} \cdots\binom{\text { Work Energy }}{\text { theorem }} \\
-m g h-m g h+W_{F} & =0 \\
W_{F} & =2 m g h \quad \text { ANS }(b) \tag{ANS}
\end{align*}
$$

Solution:12
At $V=V_{\text {max }}, \frac{d v}{d t}=0 \Rightarrow a=0 \Rightarrow F=0$

$$
\Rightarrow \quad 4-x^{2}=0 \Rightarrow x=2
$$

V is maximum at $x=2 \Rightarrow$ K.E. is maximum at $x=2$
KE at $x=2$
$=$ work done from $x=0+6 x=2$

$$
=\int_{0}^{2}\left(4-x^{2}\right) d x=\left[4 x-\frac{x^{3}}{3}\right]_{0}^{2}=8-\frac{8}{3}=16 / 3 \mathrm{~J}=5.33 \mathrm{~J}
$$

$\operatorname{Ans}(c)$

Solution:13
Limitting friction on

$$
\begin{aligned}
m_{2} & =\mu m_{2} g=.4 \times 2 \times 10 \\
& =8 \mathrm{~N}
\end{aligned}
$$

required elongation in sporing to move m, $x=\frac{8}{k} \rightarrow$ spring Constant Using work energy theorem $\rightarrow 2$

$$
\begin{aligned}
& W_{g F}+W_{f r}+W_{F}=k_{f}-k_{i} \\
\Rightarrow & \frac{1}{2} k\left(0^{2}-x^{2}\right) \frac{0}{v} \min g x+F x=0-0
\end{aligned}
$$

$$
\begin{aligned}
& F x=\mu m_{g} x+\frac{1}{2} k x^{2} \\
& F=\mu m_{i} y+\frac{k x}{2} \\
&=4 \times 1 \times 10 t \frac{8}{2} \\
&=8 N \\
&
\end{aligned}
$$

For Video Solution of this DPP, Click on below link

Video Solution on Website:-

Video Solution on YouTube:-

Written Solution on Website:-
https://physicsaholics.com/home/courseDetails/75
https://youtu.be/6abU7oGhzRA
https://physicsaholics.com/note/notesDetalis/77

Chalo Nikis

